ΕΠΙΣΤΡΟΦΗ
Υλοποίηση μέσω γλώσσας Wolfram στο WLJS Notebook .
Μερικές Διαφορικές Εξισώσεις
Μ.Δ.Ε. 1ου βαθμού
Clear["Global`*"]
PDE = -2 y D[u[x, y], x] + D[u[x, y], y] + 2 y u[x, y] == 2 y
bound = u[1, y] == 1 + Exp[-1 - 2 y^2]
DSolve[{PDE, bound}, u[x, y], {x, y}] // FullSimplify
eqX = D[X[s, r], s] == -2 Y[s, r]
eqY = D[Y[s, r], s] == 1
eqZ = D[Z[s, r], s] == 2 Y[s, r] - 2 Y[s, r]*Z[s, r]
boundX = X[0, r] == 1
boundY = Y[0, r] == r
boundZ = Z[0, r] == 1 + Exp[-1 - 2 r^2]
DSolve[{eqX, eqY, eqZ, boundX, boundY, boundZ}, {X[s, r], Y[s, r], Z[s, r]}, s]
{X[s, r], Y[s, r], Z[s, r]} = {X[s, r], Y[s, r], Z[s, r]} /. DSolve[{eqX, eqY, eqZ, boundX, boundY, boundZ}, {X[s, r], Y[s, r],
Z[s, r]}, s][[1]]
X[s_, r_] := Evaluate[X[s, r]]
Y[s_, r_] := Evaluate[Z[s, r]]
Z[s_, r_] := Evaluate[Z[s, r]]
ParametricPlot3D[{X[s, r], Y[s, r], Z[s, r]}, {r, -1, 1}, {s, -2, 2}]
eqχ = χ == X[s, r]
eqψ = ψ == Y[s, r]
eqζ = ζ == Z[s, r]
{s0, r0} = {s, r} /. Solve[{eqχ, eqψ}, {s, r}][[1]]
Z[s0, r0] // Simplify
Static web notebook
Author kkoud
Created Tue 9 Sep 2025 21:34:16
Κώστας Κούδας | © 2025